
MATH2050C Assignment 13

No need to hand in any problem.

Supplementary Problems

1. Show that for x > 0, the sequence {an}, an = (1+x/n)n is strictly increasing and bounded
from above by

∑∞
k=0 x

k/k!.

2. Show that for each m ≥ 1, E(x) ≥
∑m

k=0 x
k/k! and conclude E(x) =

∑∞
k=0 x

k/k!.

3. Show that for x < 0, E(x) = limn→∞ an exists and E(x)E(−x) = 1.

4. Show that for x > 0, a, b ∈ R, xaxb = xa+b and (xy)a = xaya.

See next page
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The Exponential Function and Powers

We study the exponential function, and its inverse function namely the logarithmic function.
Then we use it to define the power functions. In the notes in Assignment 4 a preliminary study
was present. Here we recall the facts:

1. For x > 0, the sequence {an},

an =
(

1 +
x

n

)n
, n ≥ 1 ,

is strictly increasing and bounded from above. Hence it is convergent and we denote its
limit by E(x).

2. {an} is also convergent for x ≤ 0 and E(x)E(−x) = 1.

3. For each m ≥ 1,

1 + x +
x2

2!
+

x3

3!
+ · · ·+ xm

m!
≤ E(x) = 1 + x +

x2

2!
+

x3

3!
+ · · · .

I leave the proofs of these facts for you in the supplementary problems.

We start with the basic functional relation for E(x).

Theorem 1 For x, y ∈ R, E(x + y) = E(x)E(y) .

Proof Assume x, y ≥ 0 first.(
1 +

x

n

)(
1 +

y

n

)
=

(
1 +

x + y

n
+

xy

n2

)

=

(
1 +

x + y

n
+

xy

n2

)
(

1 +
x + y

n

) ×
(

1 +
x + y

n

)
.

Using 1 ≤ 1+a+b
1+a ≤ 1 + b for a, b ≥ 0, we have

1 ≤


(

1 +
x + y

n
+

xy

n2

)
(

1 +
x + y

n

)

n

≤
[(

1 +
xy

n2

)]n
.

As a subsequence of (1 + xy/n)n, (1 + xy/n2)n
2 → E(xy) as n → ∞. For all sufficiently large

n, E(xy)/2 ≤ (1 + xy/n2)n
2 ≤ 2E(xy) and

(E(xy)/2)1/n ≤ (1 + xy/n2)n ≤ (2E(xy))1/n .

Using a1/n → 1 as n→∞, we conclude by Squeeze Theorem that

lim
n→∞

(
1 +

xy

n2

)1/n
= 1,
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and then

lim
n→∞


(

1 +
x + y

n
+

xy

n2

)
(

1 +
x + y

n

)

n

= 1 .

Therefore, by passing limit in

(
1 +

x

n

)n (
1 +

y

n

)n
=


(

1 +
x + y

n
+

xy

n2

)
(

1 +
x + y

n

)

n

×
(

1 +
x + y

n

)n

,

we conclude E(x)E(y) = E(x+y) for x, y ≥ 0. The case of general x, y can be deduced from this
relation with the help from Theorem 1. The remaining cases are (a) x > 0, y < 0 and x+ y > 0,
(b) x > 0, y < 0, x+ y < 0, and (b) x, y, x+ y < 0. For (a), E(−y)E(x+ y) = E(x) holds. Thus
E−1(y)E(x + y) = E(x) which is E(x + y) = E(x)E(y). Cases (b) and (c) can be proved in a
similar way.

Theorem 2 E(x) is strictly increasing, continuous on R. Moreover, limn→∞E(x) = ∞ and
limn→−∞E(x) = 0.

Proof Using Fact 3 above, E(x) > 1 + x > 1. For y > x > 0, E(y) = E(x + y − x) =
E(x)E(y − x) > E(x) since E(y − x) > 1. Using the relation E(x) = 1/E(−x), one sees that E
is also increasing on (−∞, 0]. We conclude that E is strictly increasing on R.

Next, we claim that E is continuous at x = 0. For x ∈ [0, 1],

E(x)− 1 = x

(
1 +

x

2!
+

x2

3!
+

x3

4!
+ · · ·

)
≤ E(1)x.

Therefore, limx→0+ E(x) = 1. On the other hand, limx→0− E(x) = (limy→0+ E(y))−1 = 1/E(0) =
1, y = −x. Hence E is continuous at x = 0. We claim that E is continuous at an arbitrary x0.
Writing x = x0 + h, E(x) = E(x0 + h) = E(x0)E(h)→ E(x0)E(0) = E(x0) as h→ 0.

Finally, from E(x) ≥ 1 + x, we see that E(x) diverges as x → ∞. On the other hand, using
E(x) = (E(−x))−1, E(x) decays to 0 as x→ −∞.

Now we relate E(x) to ex. Recall that it was proved that for every positive a and q ≥ 1, there
is a unique positive number, denoted by a1/q, satisfying (a1/q)q = a. Given a rational number
r = p/q, p ∈ Z, q ≥ 1, define ar = (a1/q)p. It is readily checked that if r = p′/q′ then ap

′/q′ = ap/q

hence the (rational) power is well-defined. One can show that ap/q = (ap)1/q holds. (See Theo-
rem 5.6.7 in Textbook.)

In the following let E(1) = e = 2.718 · · · .
Theorem 3 E(x) = ex for any rational x.

Proof For q ∈ N, E(1) = E(q/q) = E(1/q)q, that is the q-power of E(1/q) is the number E(1).
According to the definition of the root, E(1/q) = E(1)1/q = e1/q. Then for p > 0,

E(p/q) = E(1/q · · ·+ 1/q) = E(1/q)p = (e1/q)p = ep/q .

When p < 0, E(p/q) = 1/E(−p/q) = 1/e−p/q = ep/q.
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In view of Theorem 3, it is natural to define the arbitrary power of e to be

ex ≡ E(x) .

From Theorem 2 and Theorem 5.6.5 in Textbook, the exponential function E(x) has an inverse
called the logarithmic function lnx which is continuous and strictly increasing from (0,∞) to
R. We have E(lnx) = x for all x ∈ (0,∞).

We use the logarithmic function to define the power functions. Indeed, for x > 0 and a ∈ R,
define the a-th power of x by

xa ≡ ea lnx .

We verify this definition is consistent with the old one when a is a rational number.

Theorem 6 For x > 0, xp/q = ep/q lnx .

Proof We have x = E(lnx) = E(lnx/q+· · ·+lnx/q) = E(lnx/q)q . It means x1/q = E(lnx/q).
Therefore,

xp/q ≡ (x1/q)p = E(lnx/q)p = E(p/q lnx) = ep/q lnx .

When p/q > 0, it is easily seen that limx→0+ xp/q = 0. So xp/q extends to be a continuous
function on [0,∞) by setting its value to be 0 at 0.


